Retrieval of Color Space Conversion Matrix via Convolutional Neural Network
نویسندگان
چکیده
منابع مشابه
Pedestrian Color Naming via Convolutional Neural Network
Color serves as an important cue for many computer vision tasks. Nevertheless, obtaining accurate color description from images is non-trivial due to varying illumination conditions, view angles, and surface reflectance. This is especially true for the challenging problem of pedestrian description in public spaces. We made two contributions in this study: (1) We contribute a large-scale pedestr...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملVehicle Color Recognition using Convolutional Neural Network
Vehicle color information is one of the important elements in ITS (Intelligent Traffic System). In this paper, we present a vehicle color recognition method using convolutional neural network (CNN). Naturally, CNN is designed to learn classification method based on shape information, but we proved that CNN can also learn classification based on color distribution. In our method, we convert the ...
متن کاملColor Space Conversion via Gamut-Based Color Samples of Printer
Many types of electronic imaging devices are currently available, including color cathode ray tube (CRT) devices, ink jet printers, offset printing devices, thermal transfer printers, and all of these devices utilize devicedependent color spaces for color specification. However, device-dependent color spaces do not relate to an objective definition of color or human color perception. Therefore,...
متن کاملClinical Information Extraction via Convolutional Neural Network
We report an implementation of a clinical information extraction tool that leverages deep neural network to annotate event spans and their attributes from raw clinical notes and pathology reports. Our approach uses context words and their partof-speech tags and shape information as features. Then we hire temporal (1D) convolutional neural network to learn hidden feature representations. Finally...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Machine Learning and Computing
سال: 2019
ISSN: 2010-3700
DOI: 10.18178/ijmlc.2019.9.4.816